Our Funimates Isabel, Jose and Javi attended the EuroMOF2019 conference held in Paris to present and discuss our latest advances in Titanium-Organic frameworks and enzyme encapsulation in MOFs. More info.
Carlos presented our recent results in charge transport, photoactivity and chemical reactivity in metal-organic frameworks at the ICIQ in the seminar programme sponsored by BASF.. Thanks for the invitation Mónica and JR! See here for more info.
FuniMAT was present at the International Summer School Porous Materials @ Work that took place in the Technical University of Graz. Carlos delivered a keynote lecture on the chemical stability in MOFs and advantages of titanium-organic frameworks in this context. Thanks for the invitation! See here for more info.
Our collaboration with Sánchez-Costa lab at IMDEA has been published in the cover of the Journal of Physical Chemistry Letters. This work introduces a new sensing mechanism controlled by the interaction of NOx contaminants with the framework for concomitant increase/decrease in the luminescence of the solid. Click for more info
We are really happy to see our collaboration with Puigmartí-Luis group published in JACS. By using microfluidic chips we manage to grow and shape crystals of our beloved Cu(GHG) peptide MOF at the millimeter scale. This approach permits generating monolith single crystals and might help overcoming the problems associated with the pelletization and densification of these materials for their successful implementation into functional devices. Click for more info
Natalia and Belens work has been published in JACS. Their work introduces a pioneering methodology for the synthesis of heterometallic titanium frameworks amenable to the principles of reticular chemistry. Instead of relying in the serendipitous discovery of mixed-metal clusters by trial and error, we use heterometallic MOF crystals as precursors to direct the formation of SBUs with variable connection points by metal exchange reactions at low temperature. Click for more info
Our work in collaboration with J.R. Galan-Mascaros group at ICIQ has been published in JACS. This work highlights the versatility and efficiency of TAMOF-1 as a chiral stationary phase capable of separating a variety of model racemic mixtures, including drugs, in a wide range of solvents of different polarity. This performance arises from the combination of chiral channels and weak binding sites allowing for low-energy separation of enantiomers, without any strong binding/recognition sites. Click for more info
Natalia´s work is already available at JACS. The design of metalorganic frameworks with chemical stability is limited to metal connectors as carboxylates or azolates. Inspired by the chemistry of siderophores, we report a hydroxamate titanium framework that combines photoactivity with hydrolytic stability. The straightforward derivatization of carboxylic linkers with hydroxamic groups might represent an alternative route to broaden the family of reticular solids. Check it out!
Check our last collaboration with Mateo-Alonso´s group in Polymat. Marta-COF-1 is a nonplanar 2D-COF in which the waviness of the framework does not disrupt the interlayer p-p stacking so their charge transporting properties are similar to those of the best performing planar 2D COFs. The high stability and crystallinity of Marta-COF-1 have allowed an extraordinary level of characterization by HR-TEM, showing chairlike honeycomb facets and aligned mesoporous channels consistent with the experimental and predicted dimensions and packing. For more info see here
Our study of the nanoscale properties of a family of 2D FeII Hoffmann-like coordination polymers was just published as an article in Chemistry of Materials. This collaboration between from FuniMat and SMolMat research groups of the ICMol, and scientist from the DELTA synchrotron of TU Dortmund. We report the fabrication of ultrathin films of (thickness < 30 nm) of this family of 2D FeII Hoffmann-like coordination polymers, and the subsequent study of their electronic and structural properties at the nanoscale. This type of study is unprecedented in spin crossover coordination polymers and contributes to the perspective integration of these materials into the field of electronics. You can read the full text here